
Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease Lancet. 2016;388(10043):505–17.
Qiao Y, Xie XY, Lin GZ, Zou Y, Chen SD, Ren RJ, et al. Computer-assisted speech analysis in mild cognitive impairment and Alzheimer’s disease: a pilot study from Shanghai, China. J Alzheimer Dis. 2020;75(1):211–21.
Academic google
Ahmed S, Haigh AM, de Jager CA, Garrard P. Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain. 2013;136(Pt 12):3727–37.
Academic google
Ye Z, Hu S, Li J, Xie X, Geng M, Yu J, Xu J, Xue B, Li S. Development of the Cuhk elderly voice recognition system for the detection of neurocognitive disorders using the Dementiabank corpus. ICASSP 2021 – 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. p. 6433-7.
Martinez-Nicolas I, Llorente TE, Martinez-Sanchez F, Meilan JJG. Ten years of research on automatic voice and speech analysis of people with Alzheimer’s disease and mild cognitive impairment: a systematic review article. front psychology. 2021;12:620251.
Academic google
Pistono A, Pariente J, Bezy C, Lemesle B, Le Men J, Jucla M. What happens when nothing happens? An investigation of pauses as a compensatory mechanism in early Alzheimer’s disease. Neuropsychology. 2019;124:133–43.
Patricia Pastoriza-Domínguez IGT, Diéguez-Vide F, Gómez-Ruiz I, Geladó S, Bello-López J, Ávila-Rivera A, et al. Distribution of pauses in speech as an early marker of Alzheimer’s disease. Voice Communication 2022;136:107–17.
Academic google
Balogh R, Imre N, Gosztolya G, Hoffmann L, Pakaski M, Kalman J. The role of silence in verbal fluency tasks: a new approach to screening for mild cognitive impairment. J Int Neuropsychol Soc. 2022;1-13. https://doi.org/10.1017/S1355617721001454.
Pistono A, Jucla M, Barbeau EJ, Saint-Aubert L, Lemesle B, Calvet B, et al. Pauses during autobiographical speech reflect episodic memory processes in early Alzheimer’s disease. J Alzheimer Dis. 2016;50(3):687–98.
Academic google
Yeung A, Iaboni A, Rochon E, Lavoie M, Santiago C, Yancheva M, et al. Correlating natural language processing and automated speech analysis with clinical assessment to quantify speech and language changes in mild cognitive impairment and Alzheimer’s dementia. Alzheimer ResTher. 2021;13(1):109.
Academic google
Crosson B, McGregor K, Gopinath KS, Conway TW, Benjamin M, Chang YL, et al. Functional MRI of language in aphasia: a review of the literature and methodological challenges. Neuropsychol Rev. 2007;17(2):157–77.
Academic google
Folstein MF, Folstein SE, McHugh PR. “Mini state of mind”. A practical method to qualify the cognitive status of patients for the doctor. J Psychiatry Res. 1975;12(3):189–98.
Goodglass H, KE. Evaluation of aphasia and related disorders, 2nd edition. Philadelphia: Lea Febiger; 1983.
Academic google
Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of Addenbrooke’s Cognitive Test III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;36(3-4):242–50.
Academic google
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association task forces on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s dementia. 2011;7(3):263–9.
Academic google
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Neurol Arch. 1999;56(3):303–8.
Becker JT, Boller F, Lopez OL, Saxton J, McGonigle KL. The natural history of Alzheimer’s disease. Description of the study cohort and accuracy of diagnosis. Neurol Arch. 1994;51(6):585–94.
Fraser KC, Meltzer JA, Rudzicz F. Linguistic features identify Alzheimer’s disease in narrative speech. J Alzheimer Dis. 2016;49(2):407–22.
Academic google
Hernandez-Dominguez L, Ratte S, Sierra-Martinez G, Roche-Bergua A. Computer-based assessment of patients with Alzheimer’s disease and mild cognitive impairment during a picture description task. Alzheimer’s Dementia (Amst). 2018;10:260–8.
Academic google
Pakhomov SV, Smith GE, Chacon D, Feliciano Y, Graff-Radford N, Caselli R, et al. Computerized speech and language analysis to identify psycholinguistic correlates of frontotemporal lobe degeneration. Neurol Cog Behavior. 2010;23(3):165–77.
Academic google
Forbes-McKay K, Shanks MF, Venneri A. Profiling spontaneous speech decline in Alzheimer’s disease: a longitudinal study. Acta Neuropsychiatr. 2013;25(6):320–7.
Academic google
Konig A, Satt A, Sorin A, Hoory R, Toledo-Ronen O, Derreumaux A, et al. Automatic speech analysis for the evaluation of patients with predementia and Alzheimer’s disease. Alzheimer’s Dementia (Amst). 2015;1(1):112–24.
Academic google
Toth L, Hoffmann I, Gosztolya G, Vincze V, Szatloczki G, Banreti Z, et al. A solution based on voice recognition for the automatic detection of mild cognitive impairment from spontaneous speech. Curr Alzheimer Res. 2018;15(2):130–8.
Anderson AJ, Lin F. How pattern information analyzes of semantic brain activity elicited in language comprehension might contribute to early identification of Alzheimer’s disease. Neuroimaging-Clin. 2019;22:101788.
Academic google
Friederici AD. The brain basis of language processing: from structure to function. Physiol Rev. 2011;91(4):1357–92.
Academic google
Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houde O, et al. Meta-analysis of left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimaging. 2006;30(4):1414–32.
Shafto MA, Tyler LK. Language in the aging brain: the network dynamics of cognitive decline and preservation. Sciences. 2014;346(6209):583–7.
McGeown WJ, Shanks MF, Forbes-McKay KE, Venneri A. Patterns of brain activity during a semantic task differentiate normal aging from early Alzheimer’s disease. Res. Psychiatry. 2009;173(3):218–27.
Academic google
Paulesu E, Goldacre B, Scifo P, Cappa SF, Gilardi MC, Castiglioni I, et al. Functional heterogeneity of the left inferior frontal cortex as revealed by fMRI. Neuroreport. 1997;8(8):2011–7.
Metzger FG, Schopp B, Haeussinger FB, Dehnen K, Synofzik M, Fallgatter AJ, et al. Brain activation in frontotemporal and Alzheimer’s dementia: a functional near-infrared spectroscopy study. Alzheimer ResTher. 2016;8(1):56.
Academic google
Vaughan RM, Coen RF, Kenny R, Lawlor BA. Discrepancy in semantic and phonemic verbal fluency in mild cognitive impairment: potential predictor of progression to Alzheimer’s disease. J Am Geriatr Soc. 2018;66(4):755–9.
Academic google
Woodard JL, Seidenberg M, Nielson KA, Antuono P, Guidotti L, Durgerian S, et al. Activation of semantic memory in amnesic mild cognitive impairment. Brain. 2009; 132 (part 8): 2068–78.
Meinzer M, Flaisch T, Seeds L, Harnish S, Antonenko D, Witte V, et al. Same modulation but different starting points: Performance modulates age differences in inferior frontal cortex activity during word retrieval. Plus one. 2012;7(3):e33631.
Yuan Q, Li H, Du B, Dang Q, Chang Q, Zhang Z, et al. The cerebellum and cognition: further evidence for its role in language control. cerebral cortex. 2022;bhac051. https://doi.org/10.1093/fence/bhac051.
Hartwigsen G, Neef NE, Camilleri JA, Margulies DS, Eickhoff SB. Functional segregation of the right inferior frontal gyrus: evidence for coactivation-based parcellation. cerebral cortex. 2019;29(4):1532–46.
Academic google
Jiao Y, Lin F, Wu J, Li H, Fu W, Huo R, et al. Plasticity in the language cortex and white matter tracts after resection of dominant inferior parietal lobe arteriovenous malformations: a combined fMRI and DTI study. J Neurosurgery. 2020;134(3):953–60.
Academic google
Cabeza R. Reduction of hemispheric asymmetry in older adults: the HAROLD model. Psychological Aging. 2002;17(1):85-100.
Wierenga CE, Stricker NH, McCauley A, Simmons A, Jak AJ, Chang YL, et al. Increased functional brain response during word retrieval in cognitively intact older adults at genetic risk for Alzheimer’s disease. Neuroimaging. 2010;51(3):1222–33.
Academic google
Marsolais Y, Perlbarg V, Benali H, Joanette Y. Age-related changes in functional network connectivity associated with high levels of verbal fluency performance. Cortex. 2014;58:123–38.
Academic google
Pistono A, Guerrier L, Peran P, Rafiq M, Gimeno M, Bezy C, et al. Increased functional connectivity supports language performance in healthy aging despite gray matter loss. Neurobiol Aging. 2021;98:52–62.
Mohanty R, Gonzalez-Burgos L, Diaz-Flores L, Muehlboeck JS, Barroso J, Ferreira D, et al. Functional connectivity and compensation of phonemic fluency in aging. Neuroscience of frontal aging. 2021;13:644611.